Quantum-Classical Nonadiabatic Dynamics: Coupled- vs Independent-Trajectory Methods
نویسندگان
چکیده
منابع مشابه
Quantum-Classical Nonadiabatic Dynamics: Coupled- vs Independent-Trajectory Methods.
Trajectory-based mixed quantum-classical approaches to coupled electron-nuclear dynamics suffer from well-studied problems such as the lack of (or incorrect account for) decoherence in the trajectory surface hopping method and the inability of reproducing the spatial splitting of a nuclear wave packet in Ehrenfest-like dynamics. In the context of electronic nonadiabatic processes, these problem...
متن کاملQuantum-classical Liouville dynamics of nonadiabatic proton transfer.
A proton transfer reaction in a linear hydrogen-bonded complex dissolved in a polar solvent is studied using mixed quantum-classical Liouville dynamics. In this system, the proton is treated quantum mechanically and the remainder of the degrees of freedom is treated classically. The rates and mechanisms of the reaction are investigated using both adiabatic and nonadiabatic molecular dynamics. W...
متن کاملDynamics of entangled quantum optical system in independent media
We study the dynamics of two three-level atoms interacting with independent bosonic Lorentzian reservoirs at zero temperature. Such systems can be created in far astronomical objects. Quantum mechanical behaviour of these particles can produce detectable effects on the spectroscopic identifications of these objects, if such behaviour remain stable during the interaction with their media. It is ...
متن کاملNonadiabatic quantum-classical reaction rates with quantum equilibrium structure.
Time correlation function expressions for quantum reaction-rate coefficients are computed in a quantum-classical limit. This form for the correlation function retains the full quantum equilibrium structure of the system in the spectral density function but approximates the time evolution of the operator by quantum-classical Liouville dynamics. Approximate analytical expressions for the spectral...
متن کاملNonadiabatic chemical dynamics in an intense laser field: electronic wave packet coupled with classical nuclear motions.
Dynamics of molecules in an intense laser field is studied in terms of the quantum electronic wave packet coupled with classical nuclear motions. The equations of motion are derived taking a proper account of molecular interactions with the vector potential of a classical electromagnetic field, along with the nonadiabatic interaction due to the breakdown of the Born-Oppenheimer approximation. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chemical Theory and Computation
سال: 2016
ISSN: 1549-9618,1549-9626
DOI: 10.1021/acs.jctc.5b01180